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We analyze the Schild’s ladder parallel transport procedure for an arbitrary
connection. We demonstrate that the procedure, while it can be performed for
any connection, in fact is only capable of detecting the symmetric part of this
connection. In geometries with a symmetric connection it fulfills its goal to
express connection and parallel transport of any vector in terms of geodesics of
such geometries.

1. INTRODUCTION

The Schild’s ladder parallel transport procedure [2, 4] is known to
provide a strikingly simple depiction of the parallel transport of a vector
along a curve. It is even more remarkable that it utilizes the tangent structure
of a manifold only for the initial formulation of the problem and for interpreta-
tion of the final results. The technical part of the procedure is based entirely
on the manifold itself and requires only the knowledge of geodesics, thus
implying that all information about the connection of the geometry is encoded
in the geodesics.

The geodesic feature makes the procedure a promising tool for extensions
of the connection concept to the formulations of general relativity lacking
differentiability features and the tangent structures, such as various lattice
formulations, including the most promising Regge calculus formulation [3].
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A careful analysis of the Schild’s ladder procedure is absent in the
literature. The “proof” that it works properly refers to one’s intuition and to
the equivalence principle, and essentially cannot be considered as a proof.
At best, it is merely a supporting argument for it. One feature which calls
for caution is the symmetry of the procedure in its treatment of the displace-
ment vector and of the parallel translated vector. This symmetry serves as
the basis of the “proof” of the connection symmetry in ref. 4, while the
procedure itself does not contain any references to the connection symmetry.
It can be carried out for the connections that are not symmetric, leaving one
with the question of what it will do in this case.

The present paper attempts to close the gap by figuring out, completely
and in the most general context, what the Schild’s ladder procedure is
detecting. This is achieved via a careful formulation of the procedure with
particular stress on the structures on which different elements of the construc-
tion reside (Section 2). After that, a simple calculation shows what exactly
the procedure involves (Section 3).

2. SCHILD’S LADDER PROCEDURE

Our description of the Schild’s ladder procedure mirrors the description
given in ref. 4, except we are more careful and explicit in pointing out where
different elements of the Schild’s construction reside. We assume that the
geometry on the manifold M is determined by an arbitrary connection ¹.
Connections on the curves in the manifold are induced by this connection
in the usual manner [1]. Knowledge of these induced connections along all
the curves in the manifold is equivalent to the knowledge of the manifold
connection. The Schild’s ladder procedure supplies a prescription for recov-
ering these connections.

The procedure considers a curve C parametrized by the parameter t and
a vector A P TP0 M at a point P0 on the curve (TP0 M is the tangent space at
the point P0) (cf. Fig. 1). The direction of the curve C at P0 is given by the
vector u at this point (u P TP0 M ).

The Schild’s ladder algorithm considers the parallel transport of vector
A from the point P0 P C to the point P1 P C separated from P0 by the
parameter value t (presumably infinitesimal) and works as follows (cf. Fig. 1).

1. We pick a curve in the manifold passing through the point P0 in the
direction of A and parametrized by a parameter s in such a way that, at P0,
d/ds 5 A. After that, we pick a point P2 on this curve separated from the
point P0 by the (infinitesimal) value of the parameter s. Both t and s can
be thought to be small enough for the whole Schild’s ladder construction to
be placed within one coordinate neighborhood. All coordinate expressions
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Fig. 1. Vector A is to be parallel transported along the curve C from point P0 to point P1. The
sections of the curves involved in the Schild’s ladder procedure are infinitesimal and thus are
depicted as straight on all subsequent figures. The actual Schild’s ladder parallel transport
procedure is shown on the right in this figure.

will be written in the chart of this coordinate neighborhood, and, up to the
order relevant in subsequent computations (linear in t and linear in s)

xm
1 2 xm

0 5 tum (1)

xm
2 2 xm

0 5 sAm (2)

The lower index in these equations labels the point, while um, Am are the
components of vectors in the coordinate basis (index labeling of the point is
omitted for these components as there is no possibility of confusion).

2. The action of the second step of the procedure is performed entirely
in the manifold. Points P2 and P1 are connected by a geodesic parametrized
by the affine parameter l in such a way that the point P2 corresponds to the
zero value of this parameter and P1 corresponds to the value of the parameter
2l. Point P3 on this geodesic is “the middle point” determined by the value
of the parameter l. After that, point P0 is connected to the point P3 by the
geodesic parametrized by the parameter r in such a way that this parameter
takes zero value at P0 and value r at P3. The geodesic is continued past the
point P3 until the point P4 determined by the value of the parameter 2r is
reached. A curve connecting points P1 and P4 is parametrized in such a way
that P1 corresponds to the zero value of the parameter and P4 corresponds
to the parameter value s. This curve might be thought of as the curve
connecting P0 and P1 parallel translated from P0 to P1 along the curve C.

3. The vector A| 5 (d/ds) P1 is thought of as the vector A parallel
translated along C from P0 to P1. Just as in the first step of the procedure,
the value of s is considered to be infinitesimal, so that, to the relevant order,
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xm
4 2 xm

1 5 sAm
| (3)

and

(sA)| 5 sA| (4)

The procedure might seem to be slightly ambiguous in the part concern-
ing the curves (and their parametrizations) connecting P0 to P2 and P1 to P4.
In fact, there is no ambiguity, as the whole construction is infinitesimal and
thus all the relations (between vectors and displacements, between different
parameters, etc.) are linearized. In possible generalizations that do not appeal
to infinitesimal properties of curves P0P2 and P1P4, the ambiguity can be
removed by imposing on these curves the demand to be geodesics with the
affine parameter s chosen the way described above. In infinitesimal limit,
the two descriptions coincide.

This, in essence, is the reason why simple diagrams similar to the one
in ref. 4 work, to an extent. However, the “proof” that they work given in
ref. 4 is a bit naive and leads to several questions. The procedure itself does
not appear to have any restrictive assumptions concerning the connection. It
could be carried out for the geometries determined by an arbitrary connection.

On the other hand, the procedure essentially states that parallel translation
of any vector and, consequently, all of the connection is determined by
geodesics of the geometry. This is strange because a geodesic with the affine
parameter l and its tangent vector u 5 d/dl with components um in a
coordinate basis is described by the equation

dum

dl
1 Gm

ab uaub 5 0 (5)

which clearly cannot provide any information about the antisymmetric part
of the connection. The geodesics determine only the symmetric part of the
connection. As a result, the Schild’s ladder procedure can possibly work only
for symmetric connections. This conclusion is dramatically stressed by the
“proof” that the connection must be symmetric [4] based on the observation
that the Schild’s ladder diagram above is symmetric with respect to the
displacement vectors sA and tu (cf. Fig. 2) and allows one, infinitesimally,
to interpret tu| as the displacement from P2 to P4,

xm
4 2 xm

2 5 tum
| (6)

This makes the diagram formed by the vectors sA, tu| and tu, sA|

closed, which implies [4]
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Fig. 2. The Schild’s ladder parallel transport procedure is symmetric with respect to the
displacement vectors s A and tu.

Gm
ab 5 Gm

ba (7)

3. SCHILD’S LADDER AND PARALLEL TRANSPORT

To trace the origin of this symmetry, we compute directly the difference
Am

| 2 Am from the infinitesimal picture in a local coordinate system, similar
to the one above, except we augment the picture with additional details
describing geodesics connecting points P0 to P4 and P1 to P2 (cf. Fig. 3).

We introduce notations v and v| for the vector d/dr at the points P0 and
P3, respectively, as well as w and w| for the vector d/dl at the points P2 and
P3. Vector v| is obtained by the parallel translation of v along the geodesic
connecting P0 to P4.

The equation for the geodesic

dvm

dr
1 Gm

abva dxb

dr
5 0 (8)

produces, in the lowest order, the relation

vm
| 2 vm 5 2(Gm

ab)0 va(xb
3 2 xb

0) (9)

where the index 0 on the connection coefficients indicates that they are
computed at the point P0. This index, indicating the point of computing the

Fig. 3. Computation of the results of Schild’s ladder transport, demonstrating that Schild’s
procedure picks up the symmetric part of the connection.
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connection coefficients, can be dropped because the change of this point on
the diagram results in corrections of higher order. We will do so from now on.

The quantity of interest for our computation is

rvm
| 2 rvm 5 2rGm

ab va(xb
3 2 xb

0) (10)

The same line of consideration produces a similar equation for w, w|:

lwm
| 2 lwm 5 2lGm

ab wa(xb
3 2 xb

2) (11)

We are going to evaluate the difference between the displacements from
point P1 to point P4 and the displacement from point P0 to point P2,

(xm
4 2 xm

1 ) 2 (xm
2 2 xm

0 ) 5 (xm
4 2 xm

3 ) 1 (xm
3 2 xm

1 ) 2 (xm
2 2 xm

3 ) 2 (xm
3 2 xm

0 )

(12)

In the lowest order

(xm
4 2 xm

1 ) 5 sAm
| (13)

(xm
2 2 xm

0 ) 5 sAm (14)

(xm
4 2 xm

3 ) 5 rvm
| (15)

(xm
3 2 xm

1 ) 5 2lwm
| (16)

(xm
2 2 xm

3 ) 5 2lwm (17)

(xm
3 2 xm

0 ) 5 rvm (18)

Substitution of expressions (13)–(18) in (12) followed by application of Eqs.
(10), (11) yields

s(Am
| 2 Am) 5 lGm

ab wa(xb
3 2 xb

2) 2 rGm
ab va(xb

3 2 xb
0) (19)

In the order appropriate for substitution in Eq. (19) (cf. the diagram),
we have

(xb
3 2 xb

2) 5 1–2 (tub 2 sAb) (20)

(xb
3 2 xb

0) 5 1–2 (tub 1 sAb) (21)

This substitution results in the equation

s(Am
| 2 Am) 5 1–2 lGm

abwa(tub 2 sAb) 2 1–2 rGm
abva(tub 1 sAb)

5 21–2 tGm
ab(2lwa 1 rva)ub 2 1–2 sGm

ab(lwa 1 rva)Ab (22)

In the same order (cf. again the diagram)

sAa 5 2lwa 1 rva (23)

tub 5 lwa 1 rva (24)
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Substitution of the last two expressions in Eq. (22) leads to the final
expressions

s(Am
| 2 Am) 5 21–2 tsGm

ab(Aaub 1 uaAb) 5 2tsGm
(ab)Aaub (25)

Am
| 2 Am 5 2tGm

(ab)Aaub (26)

Equation (26) clearly states that the Schild’s ladder procedure in the
case of general connection determines parallel transport with respect to the
symmetric part of this connection.

4. DISCUSSION

In Sections 2 and 3 we have provided a careful description of the Schild’s
parallel transport procedure clearly delineating the steps of the procedure
performed on the manifold from the steps involving the differentiable (tan-
gent) structure. A direct computation of Section 3 clearly demonstrates that,
in the case of a generic connection, Schild’s procedure does not describe
parallel transport with respect to this connection and instead yields parallel
transport with respect to the symmetric part of the connection. This result is
natural in view of the fact that Schild’s parallel transport procedure is based
entirely on geodesic lines, and equations describing these lines are not capable
of detecting anything but the symmetric part of the connection. If the original
connection is symmetric (which is the case in such an important application
as general relativity), Schild’s procedure is sufficient. Moreover, the procedure
can be split into parts some of which occur entirely in the manifold itself
and do not appeal to the tangent spaces. This gives one hope that the procedure
can be used in formulations of general relativity lacking tangent structure
(Regge calculus, for instance) via slight reinterpretation of the parallel-trans-
ported objects.
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